Sunday, November 15, 2009

BESARAN VEKTOR DAN BESARAN SKALAR

dari Kunny Kunhertanti
kelas: 12 IPA 2
no absen: 21
e-mail: unnie.khun@gmail.com

Menentukan vektor resultan

Ada dua cara yang dapat dilakukan untuk menentukan nilai dan arah vektor resultan, yaitu dengan metode grafis dan metode analitis.

MENENTUKAN VEKTOR RESULTAN DENGAN METODE GRAFIS

Dengan menggunakan metode segitiga dan poligon, kita dapat melukis vektor resultan dari dua buah vektor atau lebih. Dari gambar vektor resultan tersebut, kita dapat menentukan besar dan arah vektor resultan dengan melakukan pengukuran (bukan menghitung). Cara menentukan vektor resultan seperti ini disebut metode grafis. Sekarang, bagaimana menentukan vektor resultan dengan metode grafis ?

Langkah-langkah menentukan besar dan arah vektor resultan dengan metode grafis, adalah sebagai berikut :

  1. tetapkan sumbu X positif sebagai acuan menentukan arah. Ingat, sudut positif diukur dengan arah berlawanan arah jarum jam, sedangkan sudut negatif diukur dengan arah searah jarum jam.
  2. gambar setiap vektor yang akan dijumlahkan (lihat kembali menggambar penjumlahan vektor menggunakan jajaran genjang)
    1. Arah vektor digambar terhadap sumbu x positif dengan menggunakan busur derajat
  3. gambar vektor Resultan dengan metode segitiga (untuk 2 vektor) dan metode poligon (lebih dari 2 vektor)
  4. ukur panjang vektor Resultan dengan mistar, sedangkan arah vektor Resultan diukur terhadap sumbu x positif dengan busur derajat
  5. tentukan besar dan arah vektor Resultan :
    1. Besar vektor Resultan sama dengan hasil kali panjang vektor resultan (langkah 4) dengan skala panjang (langkah 2b)
    2. Arah vektor resultan sama dengan sudut yang dibentuk oleh vektor resultan terhadap sumbu x positif yang telah diukur dengan busur derajat

Contoh soal :

Tentukan besar dan arah vektor resultan dari vektor perpindahan A sepanjang 20 m dengan arah -30o terhadap sumbu x positif (arah mendatar ke kanan) dan vektor perpindahan B sepanjang 30 m dengan arah +45o terhadap sumbu x positif.

Petunjuk :

Kita harus menetapkan skala panjang terlebih dahulu. Setelah itu, gambar vektor A dan B secara terpisah. Terakhir, gambar vektor resultan R=A+B dengan metode segitiga atau poligon, lalu kita menentukan besar dan arahnya

Panduan solusi :

Langkah 1, misalnya kita menetapkan skala panjang vektor perpindahan 5 m = 1 cm (catatan : anda dapat menetapkan skala sesuai dengan kemauan anda, penetapan skala di atas hanya sebagai contoh). Dengan demikian, besar perpindahan 20 m digambar dengan panjang vektor 4 cm (ingat, 20 : 5 = 4), dengan arah -30o terhadap sumbu x positif (gambar a).

Langkah 2, gambar vektor perpindahan B (besarnya 30 m) dengan panjang tanda panahnya 6 cm (ingat, skala yang kita tetapkan 5 m = 1 cm, jadi 30 m = 6 cm) dan arahnya sebesar 45o terhadap sumbu x positif. (gambar b). Lihat gambar di bawah.


Langkah 3, gambar vektor resultan R = A + B (gambar c)

Langkah 4, ukur panjang vektor R dengan mistar dan arah vektor R dengan bujur sangkar. Besar vektor R diperoleh dengan mengalikan panjang vektor R dengan skala panjang vektor

(Catatan : menentukan besar dan arah vektor Resultan dengan metode grafis merupakan salah satu pendekatan. Ketelitian hasil yang diperoleh juga sangat bergantung pada skala gambar, ketelitian mistar, busur derajat serta ketepatan anda dalam menggambar dan membaca skala. Jika anda ingin menentukan besar dan arah vektor Resultan secara lebih tepat, dapat digunakan perhitungan matematis (bukan dengan pengukuran), yakni menggunakan metode analitis)

MENENTUKAN VEKTOR RESULTAN DENGAN METODE ANALITIS

Dalam menentukan besar dan arah vektor Resultan dengan metode analitis, kita dapat menggunakan 2 cara yaitu menggunakan Rumus Cosinus dan menggunakan Vektor Komponen.

Menentukan Vektor Resultan segaris kerja (ingat kembali pelajaran SMP)

Di SMP kita telah belajar tentang vektor resultan untuk dua vektor gaya yang segaris kerja (searah atau berlawanan arah). Kali ini kita ulangi kembali, sebagai dasar sebelum menghitung vektor resultan dengan rumus Cosinus.

Kita meninjau vektor perpindahan yang segaris kerja. Misalnya kamu berpindah sejauh 200 m ke arah timur (vektor A), lalu berjalan kembali arah barat sejauh 300 m (vektor B).berapakah perpindahan total yang kamu lakukan dihitung dari kedudukan awalmu ?

Panduan Jawaban :

Untuk vektor2 yang segaris kerja, arahnya dapat dibedakan dengan memberi tanda + dan -. Jika kita tetapkan arah timur bertanda +, maka arah barat bertanda -. Berdasarkan ketetapan kita tadi, maka besar vektor A = +200 m dan besar vektor B = -300 m. dengan demikian besar vektor Resultannya adalah : R = A + B = (+200 m) + (-300 m) = 200 m – 300 m = -100 m (tanda – hanya menunjukan bahwa arah vektor Resultan ke barat atau sesuai dengan arah vektor B)

(pada gambar ditetapkan skala 50 m = 1 cm)

Melalui contoh di atas, diketahui bahwa operasi penjumlahan dalam berhitung berlaku untuk resultan dari dua vektor yang berlawanan arah. Demikian juga dua vektor yang searah.

Menentukan vektor Resultan Pada Segitiga Siku-siku

Apakah hitungan vektor tetap memenuhi hukum berhitung jika perpindahan berlaku untuk dua dimensi ? untuk menjawabnya, perhatikan contoh berikut ini.

Dari kedudukan awalmu, kamu berjalan ke timur sejauh 300 m (vektor A), lalu berbelok ke selatan sejauh 400 meter (vektor B). Apakah perpindahan totalmu 700 m ? atau 100 m ?

Panduan jawaban :

Terlebih dahulu kita tetapkan skala perpindahan, misalnya 100 m = 1 cm. dengan demikian, perpindahan ke timur sejauh 300 m digambar dengan panjang vektor 3 cm, sedangkan perpindahan ke selatan sejauh 400 m digambar 4 cm. lihat gambar di bawah


Untuk menentukan vektor resultan di atas, kita tidak bisa menggunakan hukum berhitung seperti pada dua atau lebih vektor yang segaris, karena dua vektor tersebut tidak segaris kerja. Vektor resultan dapat kita tentukan besarnya menggunakan rumus Pythagoras dalam segitiga siku-siku.

Jadi, besar vektor Resultan = 500 m

Menentukan arah vektor Resultan

Kita sudah mengetahui besar vektor Resultan. Bagaimana dengan arah vektor Resultan tersebut ? untuk menentukan arah vektor Resultan terhadap salah satu vektor komponennya, kita menggunakan rumus Sinus, Cosinus dan Tangen pada segitiga. Perhatikan gambar di bawah ini.

Karena diketahui besar vektor komponen A (300 m) dan besar vektor komponen B (400 m), maka dalam menentukan arah vektor Resultan, kita menggunakan Rumus Tangen.

Menentukan Vektor Resultan dengan Rumus Cosinus

Kita telah menghitung vektor resultan dari dua vektor yang segaris kerja dan dua vektor yang saling tegak lurus. Bagaimana-kah menghitung vektor resultan untuk dua vektor yang tidak segaris kerja dan tidak saling tegak lurus ?

Kita bisa menghitung vektor resultan dari dua vektor yang berarah sembarang dengan menggunakan rumus cosinus, Rumus Cosinus yang digunakan untuk menghitung resultan besar dua vektor yang arahnya sembarang adalah :


Misalnya terdapat dua vektor, F1 dan F2 sebagaimana tampak pada gambar di bawah.


Jika besar vektor resultan dihitung dengan rumus cosinus, bagaimana dengan arahnya ? dihitung dengan rumus apakah ?

Kita menggunakan rumus sinus.

Perhatikan kembali gambar di atas. Arah vektor Resultan dapat dihitung menggunakan sinus pada segitiga OPQ.

Contoh soal :

Dua vektor F1 dan F2 memiliki pangkal berhimpit, di mana besar F1 = 4 N dan besar F2 = 3 N. jika sudut yang dibentuk kedua vektor adalah 60o, berapakah besar dan arah vektor resultan ?

Panduan Jawaban :

Besar vektor resultan kita hitung menggunakan persamaan di atas :

Bagaimana dengan arahnya ?

Arah vektor resultan =

MENENTUKAN VEKTOR RESULTAN DENGAN VEKTOR KOMPONEN

Sekarang kita memasuki peradaban baru eknik menentukan vektor resultan menggunakan vektor komponen selalu digunakan dalam pembelajaran fisika selanjutnya. Dalam pembahasan gerak parabola, kita juga akan menggunakan teknik ini.

Tahukah dirimu apa itu vektor komponen ?

Dalam menggambarkan sesuatu, kita selalu menggunakan koordinat x dan y (untuk dua dimensi) atau koordinat xyz (untuk tiga dimensi). Nah, apabila sebuah vektor membentuk sudut terhadap sumbu x positif, pada bidang koordinat xy, maka kita bisa menguraikan vektor tersebut ke dalam komponen sumbu x atau komponen sumbu y. kedua vektor komponen tersebut biasanya saling tegak lurus. Untuk memudahkan pemahaman anda, kita gambarkan sebuah vektor pada bidang koordinat xy, sebagaimana tampak pada gambar di bawah.

Vektor F yang membentuk sudut teta terhadap sumbu x positif, diuraikan menjadi komponen sumbu x, yaitu Fx dan dan komponen pada sumbu y, yakni Fy. Ini merupakan contoh vektor komponen.

Jika vektor F mempunyai nilai/besar, bagaimanakah dengan vektor komponennya, yakni Fx dan Fy ? bagaimana menghitung besar Fx dan Fy ?

Pahami terlebih dahulu rumus sinus, cosinus dan tangen di bawah ini…

Bagaimana dengan arah F ? untuk menentukan arah vektor resultan, kita menggunakan rumus tangen. Kita menggunakan rumus tangen karena komponen Fx dan Fy diketahui.

Contoh soal 1 :

Tentukanlah komponen-komponen vektor gaya (F) yang besarnya 40 N dan membentuk sudut 60o terhadap sumbu x positif (lihat gambar)

Panduan jawaban :

Yang ditanyakan pada soal di atas adalah komponen vektor F pada sumbu x dan y (Fx dan Fy).

Contoh soal 2 :

Tentukan besar dan arah vektor perpindahan (L), di mana komponen sumbu x-nya = 40 m dan komponen sumbu y-nya = 30 m.

Panduan jawaban :

Sebelum menjawab pertanyaan di atas, terlebih dahulu digambarkan vektor L dan vektor komponennya pada sumbu x dan sumbu y.

Lx = 40 m

Ly = 30 m

Besar vektor perpindahan (L) adalah :


Vektor perpindahan L membentuk sudut 53o terhadap sumbu x positif (berada di kuadran I)

 

Penjumlahan Vektor

Menggambar Penjumlahan atau

selisih dua buah vektor dengan metode segitiga

Misalkan dua orang anak mendorong sebuah benda dengan vektor gaya masing-masing sebesar F1 dan F2, seperti ditunjukkan diagram di bawah. Ke arah mana benda itu akan pindah ? tentu saja benda tersebut tidak berpindah searah F1 atau F2. dalam kasus seperti itu, maka benda tersebut berpindah searah dengan F1 + F2. Operasi ini disebut jumlah vektor.


Cara menggambar jumlah dua buah vektor adalah dengan metode segitiga. Pertama, gambar vektor F1 berupa tanda panah. kedua, gambar vektor kedua, F2, dengan pangkalnya berhimpitan dengan ujung vektor pertama, F1. ketiga, jumlahkan kedua vektor, dengan menggambar vektor resultan (F1 + F2), dari pangkal vektor F1 menuju ujung vektor F2. selesai. Proses ini ditunjukkan pada gambar di bawah ini.

Cara menggambar selisih vektor pada dasarnya sama dengan menggambar penjumlahan dua vektor. Sebagai contoh, sebuah vektor F1 dan vektor F2 nilainya seperti tampak pada diagram di bawah. Berapa selisih kedua vektor tersebut ? misalnya F3 adalah selisih vektor F1 dan F2, maka dapat kita tulis F3 = F1 – F2 atau F3 = F1 + (-F2). Hal ini menunjukkan bahwa selisih antara vektor F1 dan F2 sama saja dengan penjumlahan vektor F1 dan vektor -F2. tanda minus hanya menunjukkan bahwa arah -F2 berlawanan dengan F2.

Bagaimana menggambar selisih vektor F1 dan F2 ?

Pertama, gambar terlebih dahulu tanda panah yang melambangkan vektor F1. kedua, gambar vektor -F2. vektor -F2 besarnya sama dengan F2, hanya arahnya berlawanan. (Lihat dan bandingkan gambar di bawah dan di atas). Ketiga, gambar tanda panah vektor resultan F3, di mana pangkal vektor F3 berimpit dengan pangkal vektor F1 dan ujung vektor F3 berimpit dengan ujung vektor -F2. Berimpit itu artinya menempel.


Menggambar Penjumlahan lebih dari 2 Vektor dengan metode Poligon

Poligon itu adalah segi banyak/banyak segi.

Sebelumnya, kita belajar menggambar 2 vektor dengan cara segitiga. Bagaimana jika kamu disuruh menggambar resultan atau jumlah vektor yang lebih dari 3 ?

Misalnya kamu berpindah sejauh 4 meter, vektor A (lihat gambar di bawah), lalu kamu berpindah lagi sejauh 3 meter, vektor B. Karena hobimu jalan-jalan, maka kamu pindah lagi sejauh 2 meter, vektor C.

untuk menggambar vektor resultan/hasil penjumlahan lebih dari 2 vektor, maka kamu tidak bisa menggunakan metode/cara segitiga. Kenapa? Cari tahu sendiri ya, kan dah besar. Kamu harus menggunakan metode poligon/segi banyak. Caranya, pertama, gambar vektor A. kedua, gambar vektor B, di mana pangkal vektor B berimpit/nempel dengan ujung vektor A (lihat gambar di bawah). Ketiga, gambar vektor C di ujung vektor B. caranya seperti menggambar vektor B. terakhir, gambar vektor D sebagai vektor resultan/hasil, dimana pangkal vektor D nempel dengan pangkal vektor A dan ujung vektor B nempel dengan ujung vektor C.


Menggambar Penjumlahan 2 atau Lebih vektor dengan metode Jajaran Genjang.

Selain menggambar penjumlahan vektor dengan metode/cara segitiga dan poligon, kita juga bisa menggunakan metode jajaran genjong, eh genjang. Kalau metode segitiga khusus untuk dua vektor dan metode poligon khusus untuk lebih dari dua vektor, maka metode jajaran genjang untuk menggambar penjumlahan dua vektor atau lebih. Bagaimana menggambar penjumlahan dua vektor atau lebih menggunakan cara jajaran genjang ?

Menggambar penjumlahan 2 vektor menggunakan metode jajaran genjong.

Misalkan dua orang anak mendorong sebuah benda dengan vektor Gaya masing-masing sebesar F1 dan F2, seperti ditunjukkan diagram di bawah. Ke arah mana benda itu akan pindah ?

untuk menggambar penjumlahan dua vektor, lakukan sesuai langkah2 di bawah ini. Pertama, gambar vektor F1 menggunakan tandah panah (lihat gambar di bawah). Kedua, gambar vektor F2, di mana pangkal/buntut berimpit/nempel dengan pangkal/buntut vektor F1. ketiga, gambar vektor resultan, F3 (F1 + F2), di mana pangkal vektor F3 nempel dengan pangkal vektor F1 dan F2, sedangkan ujung vektor F3 nempel dengan titik temu garis putus-putus dari kedua ujung vektor F1 dan vektor F2 (sambil lihat gambar, biar tidak bingung).

Menggambar penjumlahan lebih dari 2 vektor menggunakan metode jajaran genjong.

Misalnya kamu berpindah sejauh 4 meter seperti vektor A (lihat gambar di bawah), lalu kamu berpindah lagi sejauh 3 meter seperti vektor B. Karena hobimu jalan-jalan, maka kamu pindah lagi sejauh 2 meter seperti vektor C. karena suka jalan-jalan maka kamu dihukum untuk menggambar vektor perpindahanmu, tapi kali ini dengan metode jajaran genjang. Bagaimanakah ?


Untuk menggambar penjumlahan lebih dari 2 vektor, lihat petunjuk berikut ini. Pertama, gambar vektor A menggunakan tandah panah (lihat gambar di bawah). Kedua, gambar vektor B, di mana pangkalnya berimpit/nempel dengan pangkal/buntut vektor A. ketiga, gambar vektor C, di mana pangkalnya berhimpit dengan pangkal vektor A dan B. keempat, buat garis putus-putus tegak lurus dari ujung vektor A dan B sampai kedua garis putus-putus tersebut bertemu, Vektor D . Kelima, tarik garis dari pangkal vektor A,B dan C menuju titik temu garis putus-putus yang sudah kamu buat tadi (jangan lupa lihat gambar ). Keenam, buat lagi garis putus2 tegak lurus dari titik temu vektor A dan B dan dari ujung vektor C sampai kedua garis putus2 tersebut bertemu. Nah, sekarang tarik garis lurus dari pangkal vektor A, B dan C menuju titik temu garis putus2 yang baru saja kamu buat, Vektor Resultan (R). Garis terakhir tersebut adalah vektor resultannya….



 

Cara membedakan besaran skalar dan vektor

Jika saya mengatakan massa sebuah batu adalah 400 gram, pernyataan ini sudah cukup bagi anda untuk mengetahui semua hal tentang massa batu. Anda tidak membutuhkan arah untuk mengetahui massa batu. Demikian juga dengan besaran waktu, suhu, volume, massa jenis, usaha, kuat arus listrik, tekanan, daya dll.

Ada beberapa besaran fisika yang tidak dapat dinyatakan dengan nilai atau besarnya saja. Misalnya ketika saya mengatakan bahwa seorang anak berpindah sejauh 10 meter, maka pernyataan ini belum cukup. Anda mungkin bertanya, ia berpindah ke mana ? apakah ke arah utara, selatan, timur atau barat ? Demikian juga apabila anda mengatakan bahwa anda mendorong meja dengan gaya sebesar 100 N. Kemana arah dorongan anda ? nah, besaran yang demikian disebut besaran vektor, di mana memerlukan pernjelasan mengenai besar dan arahnya. Contoh besaran vektor adalah perpindahan, percepatan, impuls,momentum, dll. Selengkapnya akan anda pelajari pada pokok bahasan yang berkaitan dengan besaran tersebut.

Cara Menyatakan Suatu Vektor

Dalam fisika, akan selalu membantu jika digambarkan diagram mengenai suatu situasi tertentu, dan hal ini akan semakin berarti jika berhubungan dengan vektor. Pada diagram, setiap vektor dinyatakan dengan tanda panah. Tanda panah tersebut selalu digambarkan sedemikian rupa sehingga menunjuk ke arah yang merupakan arah vektor tersebut. Panjang tanda panah digambarkan sebanding dengan besar vektor.

Sebagai contoh, pada gambar di bawah dilukiskan suatu vektor gaya (F) yang besarnya 40 N (N = Newton, satuan gaya) dan berarah 30o utara dari timur atau 30o terhadap sumbu x positif. Besar vektor F = 40 N dilukiskan dengan panjang anak panah 4 cm. Ini berarti skala yang dipilih adalah 1 cm = 10 N atau 4 cm = 40 N.


Aturan Penulisan Vektor

Dalam menuliskan vektor, apabila anda menggunakan tulisan tangan, lambang suatu vektor umumnya ditulis dengan huruf besar dan di atasnya perlu ditambahkan tanda panah, misalnya :

Untuk buku cetak, lambang vektor ditulis dengan huruf besar yang dicetak tebal, misalnya F. Untuk besar vektor, apabila kita menggunakan tulisan tangan maka besar suatu vektor ditulis dengan tanda harga mutlak, misalnya :

Untuk buku cetak, besar vektor ditulis dengan huruf miring, misalnya F

 

Perkalian vektor dan skalar menggunakan komponen vektor satuan


Sebelum kita belajar mengenal perkalian skalar, terlebih dahulu kita berkenalan dengan vektor-vektor satuan.

Vektor satuan (unit vektor) merupakan suatu vektor yang besarnya = 1. vektor satuan tidak mempunyai satuan. Vektor satuan berfungsi untuk menunjukan suatu arah dalam ruang. Untuk membedakan vektor satuan dari vektor biasa maka vektor satuan dicetak tebal (untuk tulisan cetak) atau di atas vektor satuan disisipkan tanda ^ (untuk tulisan tangan)

Pada sistem koordinat kartesius (xyz) kita menggunakan vektor satuan  i untuk menunjukkan arah sumbu x positif, vektor satuan j untuk menunjukkan arah sumbu y positif, vektor satuan k untuk menunjukkan arah sumbu y positif.

Untuk memudahkan pemahaman dirimu, perhatikan contoh berikut ini. Misalnya terdapat sebuah vektor F sebagaimana tampak pada gambar di bawah.


Pada gambar di atas, tampak bahwa vektor satuan i menunjukkan arah sumbu x positif dan vektor satuan j menunjukkan arah sumbu y positif. Kita dapat menyatakan hubungan antara vektor komponen dan komponenya masing-masing, sebagai berikut :

Fx = Fxi

Fy = Fyj

Kita dapat menulis vektor F dalam komponen-komponennya sebagai berikut :

F = Fxi + Fyj

Misalnya terdapat dua vektor, A dan B pada sistem koordinat xy, di mana kedua vektor ini dinyatakan dalam komponen-komponennya, sebagaimana tampak di bawah :

A = Axi + Ayj

B = Bxi + Byj

Bagaimana jika A dan B dijumlahkan ? gampang…

R = A + B

R = (Axi + Ayj) + (Bxi + Byj)

R = (Ax + Bx)i + (Ay + By)j

R = Rxi + Ryj

Apabila tidak semua vektor berada pada bidang xy maka kita bisa menambahkan vektor satuan k, yang menunjukkan arah sumbu z positif.

A = Axi + Ayj + Azk

B = Bxi + Byj + Bzk

Jika vektor A dan B dijumlahkan maka akan diperoleh hasil sebagai berikut :

R = A + B

R = (Axi + Ayj + Azk) + (Bxi + Byj + Bzk)

R = (Ax + Bx)i + (Ay + By)j + (Az + Bz)k

R = Rxi + Ryj + Rzk

Perkalian titik menggunakan komponen vektor satuan

Kita dapat menghitung perkalian skalar secara langsung jika kita mengetahui komponen x, y dan z dari vektor A dan B (vektor yang diketahui).

Untuk melakukan perkalian titik dengan cara ini, terlebih dahulu kita lakukan perkalian titik dari vektor satuan, setelah itu kita nyatakan vektor A dan B dalam komponen-komponennya, menguraikan perkaliannya dan menggunakan perkalian dari vektor-vektor satuannya.

Vektor satuaj i, j dan k saling tegak lurus satu sama lain, sehingga memudahkan kita dalam perhitungan. Menggunakan persamaan perkalian skalar yang telah diturunkan di atas (A.B = AB cos teta) kita peroleh :

i . i = j . j = k . k = (1)(1) cos 0 = 1

i . j = i . k = j . k = (1)(1) cos 90o = 0

Sekarang kita nyatakan vektor A dan B dalam komponen-komponennya, menguraikan perkaliannya dan menggunakan perkalian dari vektor-vektor satuannya.

A . B = Axi . Bxi + Axi . Byj + Axi . Bzk +

Ayj . Bxi + Ayj . Byj + Ayj . Bzk +

Azk . Bxi + Azk . Byj + Azk . Bzk

A . B = AxBx (i . i) + AxBy (i . j) + Ax Bz (i . k) +

AyBx (j . i) + AyBy (j . j) + AyBz (j . k) +

AzBx (k . i) + AzBy (k . j) + AzBz (k . k)

Karena i . i = j . j = k . k = 1 dan i . j = i . k = j . k = 0, maka :

A . B = AxBx (1) + AxBy (0) + Ax Bz (0) +

AyBx (0) + AyBy (1) + AyBz (0) +

AzBx (0) + AzBy (0) + AzBz (1)

A . B = AxBx (1) + 0 + 0 +

0 + AyBy (1) + 0 +

0 + 0 + AzBz (1)

A . B = AxBx + AyBy + AzBz

Berdasarkan hasil perhitungan ini, bisa disimpulkan bahwa perkalian skalar atau perkalian titik dari dua vektor adalah jumlah dari perkalian komponen-komponennya yang sejenis.

Contoh Soal 1 :

Besar vektor A dan B berturut-turut adalah 5 dan 4, sebagaimana tampak pada gambar di bawah. Sudut yang terbentuk adalah 90o. Hitunglah perkalian titik kedua vektor tersebut.

Panduan jawaban :

Sebelum kita menghitung perkalian titik vektor A dan B, terlebih dahulu kita ketahui komponen vektor kedua tersebut.

Ax = (5) cos 0o = (5) (1) = 5

Ay = (5) sin 0o = (5) (0) = 0

Az = 0

Bx = (4) cos 90o = (4) (0) = 0

By = (4) sin 90o = (4) (1) = 1

Bz = 0

Vektor A hanya mempunyai komponen vektor pada sumbu x dan vektor B hanya mempunyai komponen vektor pada sumbu y. Komponen z bernilai nol karena vektor A dan B berada pada bidang xy.

Sekarang kita hitung perkalian titik antara vektor A dan B menggunakan persamaan perkalian titik dengan vektor komponen :

A . B = Ax Bx + AyBy + AzBz

A . B = (5) (0) + (0) (1) + 0

A . B = 0 + 0 + 0

A . B = 0

Masa sich hasilnya nol ?

Coba kita bandingkan dengan cara pertama

A.B = AB cos teta

A.B = (4)(5) cos 90

A.B = (4) (5) (0)

A.B = 0

Contoh Soal 2 :

Besar vektor A dan B berturut-turut adalah 5 dan 4, sebagaimana tampak pada gambar di bawah. Hitunglah perkalian titik kedua vektor tersebut, jika sudut yang terbentuk adalah 30o

Panduan jawaban :

Sebelum kita menghitung perkalian titik vektor A dan B, terlebih dahulu kita ketahui komponen vektor kedua tersebut.

Komponen z bernilai nol karena vektor A dan B berada pada bidang xy.

Sekarang kita hitung perkalian titik antara vektor A dan B menggunakan persamaan perkalian titik dengan vektor komponen :


Coba kita bandingkan dengan cara pertama.


Perkalian silang menggunakan komponen vektor satuan

Kita dapat menghitung perkalian silang secara langsung jika kita mengetahui komponen vektor yang diketahui. Urutannya sama dengan perkalian titik.

Pertama-tama, kita lakukan perkalian antara vektor-vektor satuan i, j dan k. Hasil perkalian vektor antara vektor satuan yang sama adalah nol.

i x i = j x j = k x k = 0

Dengan berpedoman pada persamaan perkalian vektor yang telah diturunkan sebelumnya (A x B = AB sin teta) dan sifat anti komutatif dari perkalian vektor (A x B = – B x A), maka kita peroleh :

i x j = -j x i = k

j x k = -k x j = i

k x i = -i x k = j

Sekarang kita nyatakan vektor A dan B dalam komponen-komponennya, menguraikan perkaliannya dan menggunakan perkalian dari vektor-vektor satuannya.

A x B = (Axi + Ayj + Azk) x (Bxi + Byj + Bzk)

A x B = Axi x Bxi + Axi x Byj + Axi x Bzk +

Ayj x Bxi + Ayj x Byj + Ayj x Bzk +

Azk x Bxi + Azk x Byj + Azk x Bzk

A x B = AxBx (i x i) + AxBy (i x j) + Ax Bz (i x k) +

AyBx (j x i) + AyBy (j x j) + AyBz (j x k) +

AzBx (k x i) + AzBy (k x j) + AzBz (k x k)

Karena i x i = j x j = k x k = 0 dan i x j = -j x i = kj x k = -k x j = i, k x i = -i x k = j, maka :

A x B = AxBx (0) + AxBy (k) + Ax Bz (-j) +

AyBx (-k) + AyBy (0) + AyBz (i) +

AzBx (j) + AzBy (-i) + AzBz (0)

A x B = AxBy (k) + Ax Bz (-j) +

AyBx (-k) + AyBz (i) +

AzBx (j) + AzBy (-i)

A x B = AxBy (k) + Ax Bz (-j) + AyBx (-k) + AyBz (i) + AzBx (j) + AzBy (-i)

A x B = (AyBz - AzBy)i + (AzBx - Ax Bz)j + (AxBy - AyBx )k

Pahami perlahan-lahan….

Jika C = A x B maka komponen-komponen dari C adalah sebagai berikut :

Cx = AyBz - AzBy

Cy = AzBx - Ax Bz

Cz = AxBy - AyBx

Perkalian Titik dan Perkalian Silang

Vektor bukan bilangan biasa, sehingga perkalian biasa tidak bisa langsung digunakan pada vektor. Kita harus menggunakan perkalian vektor. Perkalian vektor terdiri dari dua jenis, yaitu perkalian titik dan perkalian silang. Perkalian titik disebut juga perkalian skalarkarena menghasilkan besaran skalar. Perkalian silang disebut juga perkalian vektor karena perkalian tersebut menghasilkan besaran vektor.

Misalnya terdapat dua vektor, yakni A dan B. Perkalian skalar dari vektor A dan B dinyatakan dengan A.B (karena digunakan notasi titik maka perkalian ini dinamakan perkalian titik). Perkalian vektor dari A dan B dinyatakan dengan A x B. Karena digunakan notasi x, maka perkalian ini disebut perkalian silang.

Perkalian titik

Misalnya diketahui vektor A dan B sebagaimana tampak pada gambar di bawah. Perkalian titik antara vektor A dan B dituliskan sebagai A.B (A titik B).

Untuk mendefinisikan perkalian titik dari vektor A dan B (A.B), digambarkan vektor A dan vektor B yang membentuk sudut teta (sambil lihat gambar di bawah). Selanjutnya kita gambarkan proyeksi dari vektor B terhadap arah vektor A. Proyeksi ini adalah komponen dari vektor B yang sejajar dengan vektor A, yang besarnya sama dengan B cos teta.

Dengan demikian, kita definisikan A.B sebagai besar vektor A yang dikalikan dengan komponen vektor B yang sejajar dengan A. Secara matematis dapat kita tulis sebagai berikut :

 

AB cos teta merupakan bilangan biasa (skalar). Karenanya perkalian titik disebut juga perkalian skalar. Bagaimana jika perkalian titik antara vektor A dan B dibalik menjadi B.A ? sebelum kita definisikan B.A, terlebih dahulu kita gambarkan proyeksi dari vektor A terhadap vektor B (lihat gambar di bawah).

Berdasarkan gambar ini, kita dapat mendefinisikan B.A sebagai besar vektor B yang dikalikan dengan komponen vektor A yang sejajar dengan B. Secara matematis dapat kita tulis sebagai berikut :

Hasil perkalian titik A.B = AB cos teta dan hasil perkalian titik B.A = BA cos teta. Karena AB cos teta = BA cos teta, maka berlaku A.B = B.A

Beberapa hal dalam perkalian titik yang perlu anda ketahui :

1. Perkalian titik memenuhi hukum komutatif

A.B = B.A

2. Perkalian titik memenuhi hukum distributif

A. (B + C) = A.B + A.C

3. Jika vektor A dan B saling tegak lurus, maka hasil perkalian titik A.B = 0

Ketika vektor A dan B saling tegak lurus, maka sudut yang dibentuk adalah 90o. Cos 90o = 0. Dengan demikian : A.B = AB cos teta = AB cos 90o = 0. Sebaliknya, B.A = BA cos teta = BA cos 90o = 0

4. Jika vektor A dan vektor B searah, maka A.B = AB cos 0o = AB

Ketika vektor A dan B searah, maka sudut yang dibentuk adalah 0o. Cos 0 = 1. Dengan demikian, A.B = AB cos teta = AB cos 0o = AB. Sebaliknya B.A = BA cos teta = BA cos 0o = BA

(Anda jangan bingung dengan AB dan BA. Besar AB = besar BA. Misalnya besar vektor A = 2. besar vektor B = 3. maka A.B = 2.3 = 6; ini sama saja dengan B.A = 3.2 = 6. dipahami perlahan-lahan ya…)

5. Syarat lain dari dua vektor yang searah, jika A = B maka diperoleh A.A = A2 atau B.B = B2

6. jika vektor A dan B berlawanan arah (ketika dua vektor berlawanan arah maka sudut yang dibentuk adalah 180º), maka hasil perkalian A.B = AB cos 180º = AB (-1) = -AB.

Cos 180º = -1.

Contoh soal :

Sebuah vektor A memiliki besar 4 satuan dan vektor B memiliki 3 satuan. Tentukan hasil perkalian titik dari kedua vektor jika sudut yang dibentuk oleh kedua vektor adalah 60º, 90º dan 180o

Panduan jawaban :

Karena A.B = B.A maka kita bisa memilih menggunakan salah satu. Misalnya kita menggunakan A.B, dengan demikian kita tulis persamaannya

A.B = AB cos teta

Besar A = 4 satuan dan besar B = 3 satuan.


Soal latihan :

Dua vektor A dan B masing-masing besarnya 6 satuan dan 4 satuan. Tentukan perkalian titik antara kedua vektor jika sudut yang terbentuk adalah 30o, 60o, 90o, 120o, 150o, 180o

Perkalian silang

Perkalian silang dari dua vektor, misalnya vektor A dan B ditulis sebagai A x B (A silang B). Perkalian silang dikenal dengan julukan perkalian vektor, karena hasil perkalian ini menghasilkan besaran vektor.

Misalnya vektor A dan vektor B tampak seperti gambar di bawah.


Untuk mendefinisikan perkalian silang antara vektor A dan B (A x B), kita gambarkan vektor A dan B seperti gambar di atas, dan digambarkan juga komponen vektor B yang tegak lurus pada A (lihat gambar di bawah), yang besarnya sama dengan B sin teta

Dengan demikian, kita dapat mendefinisikan besar perkalian silang vektor A dan B (A x B) sebagai hasil kali besar vektor A dengan komponen vektor B yang tegak lurus pada vektor A.


Bagaimana jika A x B kita balik menjadi B x A ?

Terlebih dahulu kita gambarkan vektor B dan A serta komponen vektor A yang tegak lurus pada B (amati gambar di bawah…)

Berdasarkan gambar ini, kita dapat mendefinisikan perkalian silang antara vektor B dan A (B x A) sebagai hasil kali besar vektor B dengan komponen vektor A yang tegak lurus pada vektor B. Secara matematis ditulis :


Arah Perkalian Silang A x B

Perkalian silang adalah perkalian vektor, sehingga hasil perkaliannya memiliki besar dan arah. Besar hasil perkalian vektor telah kita turunkan di atas, sekarang kita menentukan arahnya. Untuk menentukan arah A x B, terlebih dahulu kita gambarkan vektor A dan B seperti gambar di bawah. Kedua vektor ini kita letakan pada suatu bidang (sambil lihat gambar di bawah ya….)

Kita definisikan perkalian silang A x B sebagai suatu vektor yang tegak lurus bidang di mana vektor A dan B berada. Besarnya sama dengan AB sin teta. Jika C = A x B maka C = AB sin teta

Arah C tegak lurus bidang di mana vektor A dan B berada. Kita dapat menggunakan kaidah tangan kanan untuk menentukan arah C. Jika kita menggenggam jari tangan di mana arahnya berlawanan dengan arah putaran jarum jam, maka arah C searah dengan arah ibu jari menuju ke atas.

Arah Perkalian Silang B x A

Untuk menentukan arah B x A, terlebih dahulu kita gambarkan vektor B dan A seperti gambar di bawah. Kedua vektor ini kita letakan pada suatu bidang (sambil lihat gambar di bawah ya….)

Jika C = B x A maka C = BA sin teta.

Arah C tegak lurus bidang di mana vektor B dan A berada. Kita dapat menggunakan kaidah tangan kanan untuk menentukan arah C. Jika kita menggenggam jari tangan di mana arahnya searah dengan arah putaran jarum jam, maka arah C sama dengan arah ibu jari menuju ke bawah.

A x B tidak sama dengan B x A. Hasil perkalian silang menghasilkan besaran vektor, di mana selain mempunyai besar, juga mempunyai arah. Pada penurunan di atas, arah A x B berlawanan arah dengan B x A.

Beberapa hal dalam perkalian silang yang perlu anda ketahui :

1.   Perkalian silang bersifat anti komutatif.

A x B = – B x A

Tanda negatif menunjukkan bahwa arah B pada A x B berlawanan dengan arah B pada B x A.

2.  Jika kedua vektor saling tegak lurus maka sudut yang dibentuk adalah 90o. Sin 90o = 1. Dengan demikian, besar hasil perkalian silang antara vektor A dan B akan tampak sebagai berikut :

A x B = AB sin teta = AB sin 90o = AB

B x A = BA sin teta = BA sin 90o = BA

Ingat ya, ini adalah besar hasil perkalian silang.

3.   Jika kedua vektor searah, maka sudut yang dibentuk adalah 0o.

Sin 0o = 0. Dengan demikian, nilai alias besar hasil perkalian silang antara vektor A dan B akan tampak sebagai berikut.

A x B = AB sin teta = AB sin 0o = 0

B x A = BA sin teta = BA sin 0o = 0

Hasil perkalian silang antara dua vektor yang searah alias segaris kerja sama dengan n0L.

 

Soal Besaran vektor dan skalar

1. Apakah perbedaan antara besaran vektor dan skalar ?

2. Sebutkan contoh besaran vektor dan skalar yang anda ketahui dan jelaskan alasan mengapa besaran tersebut disebut anda golongkan dalam besaran vektor atau skalar

3. Manakah dari besaran-besaran berikut ini yang termasuk besaran vektor ? jelaskan alasannya

  1. massa
  2. berat
  3. jarak
  4. perpindahan
  5. volume
  6. luas
  7. volume

4. manakah dari besaran-besaran berikut ini yang termasuk besaran skalar ? jelaskan alasannya…

  1. energti potensial
  2. periode
  3. energi kinetik
  4. gaya gesekan
  5. kelajuan
  6. kecepatan
  7. percepatan
  8. gaya
  9. usaha

5. bagaimana ketentuan menulis suatu besaran vektor  ?


0 comments:

Post a Comment

Arsip Blog